skip to main content


Search for: All records

Creators/Authors contains: "Wan, Gang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    The use of renewable electricity to prepare materials and fuels from abundant molecules offers a tantalizing opportunity to address concerns over energy and materials sustainability. The oxygen evolution reaction (OER) is integral to nearly all material and fuel electrosyntheses. However, very little is known about the structural evolution of the OER electrocatalyst, especially the amorphous layer that forms from the crystalline structure. Here, we investigate the interfacial transformation of the SrIrO 3 OER electrocatalyst. The SrIrO 3 amorphization is initiated by the lattice oxygen redox, a step that allows Sr 2+ to diffuse and O 2− to reorganize the SrIrO 3 structure. This activation turns SrIrO 3 into a highly disordered Ir octahedral network with Ir square-planar motif. The final Sr y IrO x exhibits a greater degree of disorder than IrO x made from other processing methods. Our results demonstrate that the structural reorganization facilitated by coupled ionic diffusions is essential to the disordered structure of the SrIrO 3 electrocatalyst. 
    more » « less
  4. Abstract

    Super‐concentrated “water‐in‐salt” electrolytes recently spurred resurgent interest for high energy density aqueous lithium‐ion batteries. Thermodynamic stabilization at high concentrations and kinetic barriers towards interfacial water electrolysis significantly expand the electrochemical stability window, facilitating high voltage aqueous cells. Herein we investigated LiTFSI/H2O electrolyte interfacial decomposition pathways in the “water‐in‐salt” and “salt‐in‐water” regimes using synchrotron X‐rays, which produce electrons at the solid/electrolyte interface to mimic reductive environments, and simultaneously probe the structure of surface films using X‐ray diffraction. We observed the surface‐reduction of TFSIat super‐concentration, leading to lithium fluoride interphase formation, while precipitation of the lithium hydroxide was not observed. The mechanism behind this photoelectron‐induced reduction was revealed to be concentration‐dependent interfacial chemistry that only occurs among closely contact ion‐pairs, which constitutes the rationale behind the “water‐in‐salt” concept.

     
    more » « less
  5. Abstract

    Super‐concentrated “water‐in‐salt” electrolytes recently spurred resurgent interest for high energy density aqueous lithium‐ion batteries. Thermodynamic stabilization at high concentrations and kinetic barriers towards interfacial water electrolysis significantly expand the electrochemical stability window, facilitating high voltage aqueous cells. Herein we investigated LiTFSI/H2O electrolyte interfacial decomposition pathways in the “water‐in‐salt” and “salt‐in‐water” regimes using synchrotron X‐rays, which produce electrons at the solid/electrolyte interface to mimic reductive environments, and simultaneously probe the structure of surface films using X‐ray diffraction. We observed the surface‐reduction of TFSIat super‐concentration, leading to lithium fluoride interphase formation, while precipitation of the lithium hydroxide was not observed. The mechanism behind this photoelectron‐induced reduction was revealed to be concentration‐dependent interfacial chemistry that only occurs among closely contact ion‐pairs, which constitutes the rationale behind the “water‐in‐salt” concept.

     
    more » « less
  6. Abstract

    A series of rod‐shaped polyoxometalates (POMs) [Bu4N]7[Mo6O18NC(CH2O)3MnMo6O18(OCH2)3CNMo6O18] and [Bu4N]7[ArNMo6O17NC(CH2O)3MnMo6O18(OCH2)3CNMo6O17NAr] (Ar=2,6‐dimethylphenyl, naphthyl and 1‐methylnaphthyl) were chosen to study the effects of cation–π interaction on macroionic self‐assembly. Diffusion ordered spectroscopy (DOSY) and isothermal titration calorimetry (ITC) techniques show that the binding affinity between the POMs and Zn2+ions is enhanced significantly after grafting aromatic groups onto the clusters, leading to the effective replacement of tetrabutylammonium counterions (TBAs) upon the addition of ZnCl2. The incorporation of aromatic groups results in the significant contribution of cation–π interaction to the self‐assembly, as confirmed by the opposite trend of assembly size vs. ionic strength when compared with those without aromatic groups. The small difference between two aromatic groups toward the Zn2+ions is amplified after combining with the clusters, which consequently triggers the self‐recognition behavior between two highly similar macroanions.

     
    more » « less
  7. Abstract

    A series of rod‐shaped polyoxometalates (POMs) [Bu4N]7[Mo6O18NC(CH2O)3MnMo6O18(OCH2)3CNMo6O18] and [Bu4N]7[ArNMo6O17NC(CH2O)3MnMo6O18(OCH2)3CNMo6O17NAr] (Ar=2,6‐dimethylphenyl, naphthyl and 1‐methylnaphthyl) were chosen to study the effects of cation–π interaction on macroionic self‐assembly. Diffusion ordered spectroscopy (DOSY) and isothermal titration calorimetry (ITC) techniques show that the binding affinity between the POMs and Zn2+ions is enhanced significantly after grafting aromatic groups onto the clusters, leading to the effective replacement of tetrabutylammonium counterions (TBAs) upon the addition of ZnCl2. The incorporation of aromatic groups results in the significant contribution of cation–π interaction to the self‐assembly, as confirmed by the opposite trend of assembly size vs. ionic strength when compared with those without aromatic groups. The small difference between two aromatic groups toward the Zn2+ions is amplified after combining with the clusters, which consequently triggers the self‐recognition behavior between two highly similar macroanions.

     
    more » « less